
Understanding and Understanding and
Managing SQL Server Managing SQL Server
FragmentationFragmentation

Greg Robidoux
Edgewood Solutions
gregr@edgewoodsolutions.com

Bullett Manale
Idera

www.idera.com

Performance & Availability

Backup & Recovery

Compliance & Security

Change Management

Idera Solutions
for SQL Server

Administration

Agenda Agenda -- FragmentationFragmentation

� Overview

◦ Understanding Storage

◦ What fragmentation is and how it occurs

◦ Detecting

◦ Fixing

◦ Managing

� Other Tools

� Questions / Wrap Up

3

StorageStorage

� Data storage
� Pages - tables and indexes are stored as a collection of 8-

KB pages

� Extents – 8 contiguous pages = 64KB total space

� Cluster or Heap
◦ Clustered – data is stored in order based on the
clustered index (b-tree)
◦ Heap – there is no particular order to how data
is stored

� Partitions
◦ Tables can have one or more partitions. The
default is one per table.

4

StorageStorage

5 Source: http://msdn.microsoft.com/en-us/library/ms130214.aspx

StorageStorage

Allocation type Used to manage

IN_ROW_DATA
(Data)

• Data or index rows that contain all data, except
large object (LOB) data.

• Pages are of type Data or Index.

LOB_DATA
(LOB)

• Large object data stored in one or more of these
data types: text, ntext, image, xml, varchar(max),
nvarchar(max), varbinary(max), or CLR user-defined
types (CLR UDT).

• Pages are of type Text/Image

ROW_OVERFLOW_DATA
(Row-Overflow)

• Variable length data stored in varchar, nvarchar,
varbinary, or sql_variant columns that exceed the
8,060 byte row size limit.

• Pages are of type Data

6

Storage Storage -- HEAPHEAP

� A heap is a table without a clustered
index

� Uses Index Allocation Map (IAM) pages to
find data

7

Storage Storage -- HEAPHEAP

8 Source: http://msdn.microsoft.com/en-us/library/ms130214.aspx

Storage Storage -- IndexesIndexes

� Indexes

◦ Clustered

◦ Non-clustered

◦ XML

◦ Full Text

� Clustered and Non-clustered

� Use b-tree index structure

9

Storage Storage –– BB--TREETREE
� B-TREE Structure
◦ In SQL Server, indexes are organized as B-trees.

◦ Each page in an index B-tree is called an index node.

◦ The top node of the B-tree is called the root node.

◦ The bottom level of nodes in the index is called the leaf nodes.

◦ Any index levels between the root and the leaf nodes are
collectively known as intermediate levels.

◦ In a clustered index, the leaf nodes contain the data pages of the
underlying table.

◦ The root and leaf nodes contain index pages holding index rows.

◦ Each index row contains a key value and a pointer to either an
intermediate level page in the B-tree, or a data row in the leaf
level of the index.

◦ The pages in each level of the index are linked in a doubly-linked
list. This means that there are pointers to the previous and next
pages.

10

Storage Storage -- Clustered IndexClustered Index

11 Source: http://msdn.microsoft.com/en-us/library/ms130214.aspx

Storage Storage -- NonNon--Clustered IndexClustered Index

12 Source: http://msdn.microsoft.com/en-us/library/ms130214.aspx

Storage Storage -- AllocationAllocation

� sys.allocation_units - contains a row for
each allocation unit in the database.

SELECT o.name AS table_name,p.index_id, i.name AS index_name ,
au.type_desc AS allocation_type, au.data_pages, partition_number

FROM sys.allocation_units AS au
JOIN sys.partitions AS p ON au.container_id = p.partition_id
JOIN sys.objects AS o ON p.object_id = o.object_id
JOIN sys.indexes AS i ON p.index_id = i.index_id

AND i.object_id = p.object_id

13

Storage Storage -- AllocationAllocation

14

What is fragmentationWhat is fragmentation

� What it is

◦ Fragmentation is when storage space is
used inefficiently, reducing storage capacity
and in most cases performance

◦ Internal fragmentation occurs when
storage is allocated without using it

◦ External fragmentation is when storage
becomes divided into many small pieces over
time

15

What is fragmentationWhat is fragmentation

� SQL Server Fragmentation
◦ Logical Fragmentation
� This is the percentage of out-of-order pages in the leaf
pages of an index.

� An out-of-order page is one for which the next page
indicated in an IAM is a page that is different from the
page pointed to by the next page pointer in the leaf
page.

◦ Extent Fragmentation
� This is the percentage of out-of-order extents in the leaf
pages of a heap.

� An out-of-order extent is one for which the extent that
contains the current page for a heap is not physically the
next extent after the extent that contains the previous
page.

16

Logical FragmentationLogical Fragmentation

17

Page level fragmentation

Extent FragmentationExtent Fragmentation

18

T1 T2 T1 T3 T3 T1

T1 T2T1 T3 T3T1

Fragmentation – before

Fragmentation – after

T2 T3

T3T2

When it happensWhen it happens

� How it happens

◦ Data modification

� Inserting – causes page splits

� Deleting – leaves free space

� Updating – changing index values

◦ Shrinking

� DBCC SHRINKDATABASE

� DBCC SHRINKFILE (data files)

� AutoShrink

19

Why is this badWhy is this bad

� Uses additional space

� Increased I/O for range scans

� Impacts performance

� Places additional demands on hardware

20

DetectingDetecting

� DBCC SHOWCONTIG

� sys.dm_db_index_physical_stats
◦ LIMITED - fastest and scans the smallest
number of pages. It scans all pages for a heap, but
only the parent-level pages for an index, which
are the pages above the leaf-level.

◦ SAMPLED - returns statistics based on a one
percent sample of all the pages in the index or
heap. If the index or heap has fewer than 10,000
pages DETAILED mode is used.

◦ DETAILED - scans all pages and returns all
statistics. This also takes the longest

21

DetectingDetecting

SELECT *

FROM sys.dm_db_index_physical_stats (
{ database_id | NULL } ,
{ object_id | NULL } ,
{ index_id | NULL | 0 } ,
{ partition_number | NULL } ,
{ mode | NULL | DEFAULT })

22

Detecting Detecting –– all DBs all indexesall DBs all indexes

SELECT *

FROM sys.dm_db_index_physical_stats (
NULL,
NULL,
NULL,
NULL ,
'LIMITED');

23

Detecting Detecting –– one table all indexesone table all indexes

DECLARE @db_id SMALLINT;

DECLARE @object_id INT;

SET @db_id = DB_ID(N‘Test');

SET @object_id = OBJECT_ID(N‘Test.dbo.Address');

SELECT *

FROM sys.dm_db_index_physical_stats (
@db_id,
@object_id,
NULL,
NULL ,
'LIMITED');

24

DMF DMF -- OutputOutput

25

SHOWCONTIG SHOWCONTIG -- OutputOutput

26

sys.dm_db_index_physical_statssys.dm_db_index_physical_stats

Column name Description

database_id Database ID of the table or view.

object_id Object ID of the table or view that the index is on.

index_id Index ID of an index. 0 = HEAP

partition_number Partition number.

index_type_desc Description of the index type: HEAP, Clustered, Non-clustered, etc…

alloc_unit_type_desc Description of the allocation unit type: In-Row, LOB, Overflow

index_depth Number of index levels.

index_level Current level of the index.

avg_fragmentation_in_percent Logical fragmentation for indexes, or extent fragmentation for heaps in the IN_ROW_DATA allocation unit.

fragment_count Number of fragments in the leaf level of an IN_ROW_DATA allocation unit.

avg_fragment_size_in_pages Average number of pages in one fragment in the leaf level of an IN_ROW_DATA allocation unit.

page_count Total number of index or data pages.

avg_page_space_used_in_percent Average percentage of available data storage space used in all pages.

record_count Total number of records.

ghost_record_count Number of deleted records (ghost records) ready for removal by the ghost cleanup task in the allocation unit.

version_ghost_record_count Number of ghost records retained by an outstanding snapshot isolation transaction in an allocation unit.

min_record_size_in_bytes Minimum record size in bytes.

max_record_size_in_bytes Maximum record size in bytes.

avg_record_size_in_bytes Average record size in bytes.

forwarded_record_count Number of forwarded records in a heap.

27

FixingFixing
� Clustered and Non-clustered indexes
◦ ALTER INDEX … REBUILD

� Rebuild a new index, built side by side
� Can run as a parallel operation
� Offline operation except for Enterprise Edition

◦ ALTER INDEX … REORGANIZE
� First moves page data to the left side of the index to get the pages as full

as possible and then removes any unneeded pages, then reorders the
pages

� Does not correct extent fragmentation
� Can not run as a parallel operation
� Online operation

� HEAP
◦ Create a clustered index on the table and then drop the

clustered index

◦ Or create new table and move data to the new table

28

Rebuild Rebuild vsvs ReorganizeReorganize

Functionality Rebuild Reorganize

Online/Offline Offline / (Online Enterprise) Online

Faster when logical fragmentation is: High Low

Parallel processing Yes No

Compacts pages Yes Yes

Can be stopped and restarted
without losing work completed to
that point

No Yes

Able to untangle interleaved indexes May reduce interleaving No

Additional free space is required in
the data file for defragmenting

Yes No

Faster on larger indexes Yes No

Rebuilds statistics Yes No

Log space usage

High in full recovery mode (logs entire
contents of the index), low in bulk logged
or simple recovery mode (only logs
allocation of space)

Varies based on the
amount of work
performed

May skip pages on busy systems No Yes

29 Source: http://technet.microsoft.com/en-us/library/cc966523.aspx

Rebuild or Rebuild or ReorganizeReorganize

avg_fragmentation_in_percent value Corrective statement
< = 30% ALTER INDEX REORGANIZE
> 30% ALTER INDEX REBUILD

30

Guideline when to rebuild versus reorganize based on the
avg_fragmentation_in_percent value

ALTER INDEX … REBUILDALTER INDEX … REBUILD
ALTER INDEX { index_name | ALL }

ON <object>

REBUILD

WITH

PAD_INDEX = { ON | OFF }

FILLFACTOR = fillfactor {1-100}

SORT_IN_TEMPDB = { ON | OFF }

IGNORE_DUP_KEY = { ON | OFF }

STATISTICS_NORECOMPUTE = { ON | OFF }

ONLINE = { ON | OFF }

ALLOW_ROW_LOCKS = { ON | OFF }

ALLOW_PAGE_LOCKS = { ON | OFF }

MAXDOP = max_degree_of_parallelism { 0 = all or specify value }

Note: The underlined value is the default

31

ALTER INDEX … REBUILDALTER INDEX … REBUILD
� FILLFACTOR – how full to make the leaf level pages of the index. This is a percentage from

1-100, the default is 0 which is the same as 100.

� PAD_INDEX – specifies whether you want to leave free space in the intermediate pages.
The fillfactor value is used for this, either the saved value or the value you specify in the
command.

� SORT_IN_TEMPDB – this specifies whether to use the TempDB database to do a sort or
to use the user database. If there is enough memory to sort the index this will all be done
in memory instead.

� IGNORE_DUP_KEY – this tells SQL whether to continue or fail the index build if there is
a duplicate key.

� STATISTICS_NORECOMPUTE – this tells SQL whether to re-compute the statistics for
the index

� ONLINE – this allows the index to be built online, so the there is no locking of the table
or index. This is only available for the Enterprise Edition.

� ALLOW_ROW_LOCKS – tells SQL whether to use row locking when building the index

� ALLOW_PAGE_LOCKS - tells SQL whether to use page level locking when building the
index

� MAXDOP – specifies how many processors to use for the index build. Only available in
the Enterprise Edition.

32 Source: http://msdn.microsoft.com/en-us/library/ms130214.aspx

ALTER INDEX … REBUILDALTER INDEX … REBUILD

ALTER INDEX PK_Employee_EmployeeID
ON HumanResources.Employee
REBUILD;

33

ALTER INDEX … REBUILDALTER INDEX … REBUILD

ALTER INDEX ALL
ON Production.Product
REBUILD

WITH
(FILLFACTOR = 80,
SORT_IN_TEMPDB = ON,
STATISTICS_NORECOMPUTE = ON);

34

ALTER INDEX … REORGANIZEALTER INDEX … REORGANIZE

ALTER INDEX { index_name | ALL }

ON <object>

REORGANIZE

WITH

LOB_COMPACTION = { ON | OFF }

Note: The underlined value is the default

35

ALTER INDEX … REORGANIZEALTER INDEX … REORGANIZE

� LOB_COMPACTION - Specifies that all
pages that contain large object (LOB)
data are compacted. LOB data types are
image, text, ntext, varchar(max),
nvarchar(max), varbinary(max), and xml.

36

ALTER INDEX … REORGANIZEALTER INDEX … REORGANIZE

ALTER INDEX PK_ProductPhoto_ProductPhotoID
ON Production.ProductPhoto
REORGANIZE ;

37

Partitioned Indexes Partitioned Indexes -- RebuildRebuild

ALTER INDEX { index_name | ALL }
ON <object>
REBUILD
PARTITION = partition_number

WITH
SORT_IN_TEMPDB = { ON | OFF }
MAXDOP = max_degree_of_parallelism

38

Partitioned Indexes Partitioned Indexes -- ReorganizeReorganize

ALTER INDEX { index_name | ALL }
ON <object>
REORGANIZE
PARTITION = partition_number

WITH
LOB_COMPACTION = { ON | OFF }

39

Partitioned IndexesPartitioned Indexes

ALTER INDEX IX_TransactionHistory
ON Production.TransactionHistory
REBUILD
Partition = 5;

ALTER INDEX IX_TransactionHistory
ON Production.TransactionHistory
REORGANIZE
Partition = 5;

40

DROP EXISTINGDROP EXISTING
� You can use the DROP_EXISTING clause to rebuild the

index, add or drop columns, modify options, modify column
sort order, or change the partition scheme or filegroup.

� If the index enforces a PRIMARY KEY or UNIQUE
constraint and the index definition is not altered in any way,
the index is dropped and re-created preserving the existing
constraint.

� DROP_EXISTING enhances performance when you re-
create a clustered index, with either the same or different
set of keys, on a table that also has nonclustered indexes.

� The nonclustered indexes are rebuilt once, and then only if
the index definition has changed.

� The DROP_EXISTING clause does not rebuild the
nonclustered indexes when the index definition has the same
index name, key and partition columns, uniqueness attribute,
and sort order as the original index.

41

DROP EXISTINGDROP EXISTING

CREATE CLUSTERED INDEX
IX_WorkOrder_ProductID
ON Production.WorkOrder(ProductID)

WITH
(DROP_EXISTING = ON);

42

HEAP HEAP

CREATE CLUSTERED INDEX IX_WorkOrder
ON Production.WorkOrder(ProductID)

DROP Production.WorkOrder. IX_WorkOrder

43

ManagingManaging

� Collecting data
� Selective rebuilds / reorgs
� Removing unused indexes
� Recovery Models and impact
� Transaction Log Usage
◦ DBCC SQLPERF(logspace)

� Online rebuilds
� MAXDOP
� Changing index settings
◦ PAD INDEX
◦ FILLFACTOR

� Maintenance Plans

44

Impact by Recovery ModelImpact by Recovery Model

Database Recovery Model
Index operation Full Bulk-logged Simple
ALTER INDEX
REORGANIZE

Fully logged Fully logged Fully logged

ALTER INDEX REBUILD Fully logged Minimally logged Minimally logged

CREATE INDEX Fully logged Minimally logged Minimally logged

DROP INDEX

Index page deallocation is
fully logged;

new heap rebuild, if
applicable, is fully logged.

Index page deallocation is
fully logged;

new heap rebuild, if
applicable, is minimally
logged.

Index page deallocation is
fully logged;

new heap rebuild, if
applicable, is minimally
logged.

45 Source: http://msdn.microsoft.com/en-us/library/ms130214.aspx

Monitoring Using Other ToolsMonitoring Using Other Tools

46

Questions and Wrap-up

• Thanks to our sponsor: Idera
• Next webcast in the series:

– Database Mirroring Concepts
– May 13th, 2009, 4pm EDT

