Understanding and
Managing SQL Server

[]
Fragmentation
Greg Robidoux Bullett Manale
Edgewood Solutions |dera
gregr@edgewoodsolutions.com www.idera.com

A\
-y

FA

ldera Solutions

Performance & Availability

@ SQL diagnostic manager ™

Monitor, diagnose & manage performance

® SQL mobile manager™

Monitor, diagnose & manage performance from a PDA

® SQL defrag manager™

Automate & optimize database defragmentation

Backup & Recovery
® SQLsafe™

Accelerate, compress & encrypt database backups

Compliance & Security

® SQL compliance manager™

Capture, audit & alert on user activity

® SQLsecure™

Assoss seeurity risks & audil access rights

Change Management
® SQL change manager™

Manage & monitor schema changes

Administration
® SQOL admin toolset™

24 essential tools for monitoring, administering,
troubleshoaoting and reporting

cders

MAMAGING YOUR WINDOWSE* WORLD ™

Agenda - Fragmentation

e Overview
> Understanding Storage

> What fragmentation is and how it occurs

> Detecting
> Fixing
> Managing

o Other Tools
e Questions /Wrap Up

X
-y

FA

Storage

» Data storage

Pages - tables and indexes are stored as a collection of 8-
KB pages

Extents — 8 contiguous pages = 64KB total space
e Cluster or Heap

o Clustered — data is stored in order based on the
clustered index (b-tree)

> Heap — there is no particular order to how data
is stored

e Partitions

> Tables can have one or more partitions. The
default is one per table.

N
Y

g
3

Storage

Table

Fartition 1
L 1
Heap or
b-tree
Data LOB Row-

Overflow

Source: http://msdn.microsoft.com/en-us/library/ms 1302 14.aspx

Partition

l

Heap or
b-tree

.

Data LOEB

N\

Row-
Cverflow

zv
)

Storage

Allocation type

Used to manage

e Data or index rows that contain all data, except

I(BEQ?W—DATA large object (LOB) data.

» Pages are of type Data or Index.

e Large object data stored in one or more of these
LOB_DATA data types: text, nte>.<t, image, xml, varchar(max),.
(LOB) nvarchar(max), varbinary(max), or CLR user-defined

types (CLR UDT).
e Pages are of type Text/Image

ROW_OVERFLOW_DATA
(Row-Overflow)

* Variable length data stored in varchar, nvarchar,
varbinary, or sql_variant columns that exceed the
8,060 byte row size limit.

e Pages are of type Data

X
Y

FA

Storage - HEAP

* A heap is a table without a clustered
index

e Uses Index Allocation Map (IAM) pages to
find data

N

Storage - HEAP

id index_id = 0 first_iam_page
IAM
v L v
header header header
Data rows Data rows Data rows

Source: http://msdn.microsoft.com/en-us/library/ms 1302 14.aspx

zv
)

Storage - Indexes

* Indexes
o Clustered
> Non-clustered
> XML
o Full Text
* Clustered and Non-clustered

Use b-tree index structure

X
-y

FA

Storage — B-TREE

e B-TREE Structure

o

o

o

In SQL Server, indexes are organized as B-trees.

Each page in an index B-tree is called an index node.

The top node of the B-tree is called the root node.

The bottom level of nodes in the index is called the leaf nodes.

Any index levels between the root and the leaf nodes are
collectively known as intermediate levels.

In a clustered index, the leaf nodes contain the data pages of the
underlying table.

The root and leaf nodes contain index pages holding index rows.

Each index row contains a key value and a pointer to either an
intermediate level page in the B-tree, or a data row in the leaf
level of the index.

The pages in each level of the index are linked in a doubly-linked
list. This means that there are pointers to the previous and next

pages.

hﬁQL Ti,

A

FA

Storage - Clustered Index

| id | index_id =1 | root_page

Root node

previous | next

Index rows

Intermediate
level —

v
R previous | next

previous | next

| previous | next

Index rows

Index rows Index rows

Leaf nodes/
data pages

in pravicus | mest previcus | et 1
i Rows of Rows of i
data data

Source: http://msdn.microsoft.com/en-us/library/ms 1302 14.aspx

K\
)

Storage - Non-Clustered Index

id | index_id > 0 | root_page

Root node —
previous | next
| Index rows
=~ Monclustered
Leaf nodes — index
LS v [N
| previous | next | “_% | previous | next | % | previous | next —_
I Inext] Z2 | et] 2 | next |—1
| Index rows Index rows Index rows
Data pages —_
“'IF?.' previous | next R R previous | next ﬁ T
>
- T — - Heap or
Rows of data Rows of data clustered
index

Source: http://msdn.microsoft.com/en-us/library/ms 1302 14.aspx

K\
3

Storage - Allocation

* sys.allocation_units - contains a row for
each allocation unit in the database.

SELECT o.name AS table_name,p.index _id, i.name AS index_name ,
au.type_desc AS allocation_type, au.data_pages, partition_number

FROM sys.allocation__units AS au
JOIN sys.partitions AS p ON au.container_id = p.partition_id
JOIN sys.objects AS o ON p.object_id = o.object _id
JOIN sys.indexes AS i ON p.index_id = i.index _id
AND i.object_id = p.object _id

N
Y

g
3

Storage - Allocation

table_name index_id | index_name allocation_type | data_pages | partition_number
156 SalesOrderDetail 1 Pk._SalezOrderDetail_SalesOrderlD_SalesOrderDetaill D IN_ROw _DaTa 1233 1
157 SalesOrderDetail 2 Ak._SalesOrderDetal_romguid IM_ROWw_DATA 408 1
158 SalesOrderDetail 3 [#_SalesOrderDetail_ProductiD IN_ROWwW _DATA 226 1
159 CurrencyR ate 1 P¥._CurrenicyR ate_CurrencyR atelD IN_ROWwW _DATA 96 1
160 CurrencyFate 2 AF._CurrencyRate_CurrencoR ateDate_FramCurrencyCode_TaoCurencyCode IM_ROW _DATA 46 1
161 Customer 1 P¥._Customer_CustomerlD IN_ROWwW _DATA 103 1
162 Customer 2 AF._Customer_rowguid IN_ROWwW _DATA BS 1
163 Cusgtomer 3 AF._Customer_AccountMumber [M_ROW _DATA RO 1
164 Customer a [#_Cusgtormer_Territaryl D IN_ROWwW _DATA 34 1
165 SalesOrderHeader 1 P¥._Salez0rderHeader_SalezOrderlD IN_ROWw _DATA BS3 1
166 SalesOrderHeader 2 AF._SalezOrderHeader_rowguid [M_ROWw _DATA 90 1
167 SalesOrderHeader 3 AF._SalezOrderHeader_5S alesOrderM umber IN_ROWwW _DATA 98 1
168 SalezOrderHeader a l#_SalesOrderHeader_Customerl D IN_ROWw _DATA 43 1
169 SalesOrderHeader G [#_Salez0rderHeader_SalesPersonlD [M_ROWwW _DATA BB 1
170 Customerdddress 1 P¥._Cusztomerdddress_CustomerlD_AddreszID IN_ROWwW _DATA 108 1
171 Customerdddress 2 AF._Customerdddress_rowaguid IM_ROWw _DATA BR 1
table_name index_id | index_name allocation_type data_pages | partition_nurnber
174 Document 1 P¥._Document_Document|D LOB_DATA, I 1
175 Document 1 PK_Document_Document D [M_ROW_DATA 1 1
176 Document 1 P¥._Document_Document|D RO OWVERFLOW DATA I 1
177 Document g Ak._Document_FileMame_Revizion [M_ROW_DATA 1 1

N
A

%

What is fragmentation

e What it is

> Fragmentation is when storage space is
used inefficiently, reducing storage capacity
and in most cases performance

> Internal fragmentation occurs when
storage is allocated without using it

- External fragmentation is when storage
becomes divided into many small pieces over
time

X
-y

FA

What is fragmentation

* SQL Server Fragmentation

- Logical Fragmentation

This is the percentage of out-of-order pages in the leaf
pages of an index.

An out-of-order page is one for which the next page
indicated in an IAM is a page that is different from the
page pointed to by the next page pointer in the leaf

page.
- Extent Fragmentation

This is the percentage of out-of-order extents in the leaf

pages of a heap.

An out-of-order extent is one for which the extent that
contains the current page for a heap is not physically the
next extent after the extent that contains the previous

page.

A

%L Ti,

FA

Logical Fragmentation

Page level fragmentation

\

LT

Extent Fragmentation

Fragmentation — before

Fragmentation — after

When it happens

* How it happens

> Data modification
Inserting — causes page splits
Deleting — leaves free space
Updating — changing index values
° Shrinking
DBCC SHRINKDATABASE
DBCC SHRINKFILE (data files)
AutoShrink

X
-y

FA

Why is this bad

e Uses additional space

* Increased I/O for range scans

* Impacts performance

* Places additional demands on hardware

N

Detecting

« DBCC SHOWCONTIG
e sys.dm_db_index_ physical stats

o LIMITED - fastest and scans the smallest
number of pages. It scans all pages for a heap, but
only the parent-level pages for an index, which
are the pages above the leaf-level.

> SAMPLED - returns statistics based on a one
percent sample of all the pages in the index or

heap. If the index or heap has fewer than 10,000
pages DETAILED mode is used.

> DETAILED - scans all pages and returns all
statistics. This also takes the longest

X
-y

%

Detecting

SELECT *

FROM sys.dm_db_index physical stats (
{ database_id | NULL } ,
{ object_id | NULL } ,
{index_id |[NULL |0 } ,
{ partition_number | NULL } ,
{ mode | NULL | DEFAULT })

N

Detecting — all DBs all indexes

SELECT *

FROM sys.dm_db_index_ physical stats (
NULL,
NULL,
NULL,
NULL,
'LIMITED);

Detecting — one table all indexes

DECLARE @db_id SMALLINT;

DECLARE @object_id INT;

SET @db_id = DB_ID(N*Test');

SET @object_id = OBJECT_ID(N‘Test.dbo.Address");

SELECT *

FROM sys.dm_db_index_physical_stats (
@db _id,
@obiject id,
NULL,
NULL,
'LIMITED";

X
-y

FA

LNl oo RO s O R SR N S [0 I ' S s O Y SR TR S S

DMF - Output

DBMame THame index_id | partition_number |index_type desc allec_unit_type desc |index_depth |index_lewvel |avg_fragmentation_in_percent
Adwenturg\Works | Employes 1 1|CLUSTERED INDEX, IH_ROVY_DATA 2 1 28.57142857
Adwenturg\Works | Employes 1 1|CLUSTERED INDEX, IH_ROVY_DATA 2 1 0
Adwventure\Works |Employes 2 1|MONCLUSTERED INDEX |IN_ROW_DATA 2 0 65 66666667
Adwventure\Works |Employes 2 1|MONCLUSTERED INDEX |IN_ROW_DATA 2 1 0
Adwventure\Works |Employes 3 1|MONCLUSTERED INDEX |IN_ROW_DATA 2 0 50
AdwventureWWorks |Employes 3 1|MONCLUSTERED INDEX |IN_ROW_DATA 2 1 0
AdwventureWWorks |Employes : 1|MONCLUSTERED INDEX |IN_ROW_DATA 1 0 0
AdwventureWWorks |Employes 5 1|MONCLUSTERED INDEX |IN_ROW_DATA 1 0 0
fragment_count |avg_fragment_zize_in_pages |page_count |avg_page _space_used_in_percent |record_count [ghost_record_count |verzion_ghost_record_count
Z 1.75 7 57.8 2510 0 0
1 1 1 1.095 7 0 0
3 1 3 65.584 2510 0 0
1 1 1 2112 3 0 0
2 1 2 51.32 2510 0 0
1 1 1 0.718580183 z 0 0
1 1 1 8238201137 2510 0 0
1 1 1 20.13390314 2510 0 1

min_record_gize_in_byles

max_record_size_in_byies

awg_record_size_in_byies

forwarded_record_count

143

o

215

HULL

HULL

HULL

HULL

HULL

HULL

HULL

el LN =N el A N I
Fd | == | =d | 003 | Ca3] =d

Pd | o= | CES | e | CEN | Y| =

e AN R A R e

HULL

N
A

S
&

SHOWCONTIG - Output

DECC SHOWCONTIG scanning 'Employes' tahle. | .
Tahle: 'Employee' (863572136 ; index ID: 1, database ID: 10
TAEBLE lewel =can performed.

- Pages Boanmed. (... e e e e e a e -7

- Extents Scarmed.1 3

- Extent Bwitches_ . ___ . __ . __: 3

- Awg. Pages per Extent.1 2.3

- &can Density [Best Count:lctual Count].......: Z5.00% [1l:4]
- Logical Scan Fragmentation:. 22_E7%

- Extent Scan Fragmentatiohco....> 33 33%

- Awvg. EBytes Free per Page. 1726

- Awvg. Page Density (fall). Do97.87%

DEBCC execution completed. ITf DEBCC printed error messages, contact your system administrator.

N
A

FA

sys.dm_db_index_physical stats

Column name Description
database _id Database ID of the table or view.
object id Object ID of the table or view that the index is on.
index_id Index ID of an index. 0 = HEAP

partition number

Partition number.

index type desc

Description of the index type: HEAP, Clustered, Non-clustered, etc...

|a||oc unit type desc

Description of the allocation unit type: In-Row, LOB, Overflow

|index depth

Number of index levels.

index level

Current level of the index.

avg fragmentation in percent

Logical fragmentation for indexes, or extent fragmentation for heaps in the IN ROW DATA allocation unit.

fragment count

Number of fragments in the leaf level of an IN ROW DATA allocation unit.

avg fragment size in pages

IAverage number of pages in one fragment in the leaf level of an IN ROW DATA allocation unit.

page count

[Total number of index or data pages.

avg page space used in_ percent

lAverage percentage of available data storage space used in all pages.

record count

[Total number of records.

host record count

Number of deleted records (ghost records) ready for removal by the ghost cleanup task in the allocation unit.

version ghost record count

Number of ghost records retained by an outstanding snapshot isolation transaction in an allocation unit.

min record size in bytes

Minimum record size in bytes.

max record size in bytes

Maximum record size in bytes.

avg record size in bytes

lAverage record size in bytes.

orwarded record count

Number of forwarded records in a heap.

N
A

S
&

Fixing

e Clustered and Non-clustered indexes
o ALTER INDEX ... REBUILD

Rebuild a new index, built side by side
Can run as a parallel operation
Offline operation except for Enterprise Edition

o ALTER INDEX ... REORGANIZE

First moves page data to the left side of the index to get the pages as full
as possible and then removes any unneeded pages, then reorders the

pages

Does not correct extent fragmentation
Can not run as a parallel operation
Online operation

« HEAP

> Create a clustered index on the table and then drop the
clustered index

o> Qr create new table and move data to the new table

N
Y

g
3

Rebuild vs Reorganize

Functionality Rebuild Reorganize

Online/Offline Offline / (Online Enterprise) Online

Faster when logical fragmentation is: |High Low

Parallel processing Yes No

Compacts pages Yes Yes

Can be stopped and restarted

without losing work completed to No Yes

that point

Able to untangle interleaved indexes |May reduce interleaving No

Addltlona.l free space is reqfured LI No

the data file for defragmenting

Faster on larger indexes Yes No

Rebuilds statistics Yes No
High in full recovery mode (Iogs entire Varies based on the
contents of the index), low in bulk logged

Log space usage . amount of work
or simple recovery mode (only logs

. performed

allocation of space)

May skip pages on busy systems No Yes

Source: http://technet.microsoft.com/en-us/library/cc966523.aspx

N
A

S
&

Rebuild or Reorganize

Guideline when to rebuild versus reorganize based on the

avg_fragmentation_in_percent value

hvg fragmentation_in_percent value

Corrective statement

< =30%

ALTER INDEX REORGANIZE

> 30%

ALTER INDEX REBUILD

X
Y

g
3

ALTER INDEX ... REBUILD

ALTER INDEX { index_name | ALL }
ON <object>
REBUILD

WITH
PAD_INDEX = { ON | OFF }
FILLFACTOR = fillfactor {I-100}
SORT_IN_TEMPDB = { ON | OFF }
IGNORE_DUP_KEY = { ON | OFF }
STATISTICS._ NORECOMPUTE = { ON | OFF }
ONLINE = { ON | OFF }
ALLOW_ROW_LOCKS ={ ON | OFF }
ALLOW_PAGE_LOCKS = { ON | OFF }
MAXDOP = max_degree_of_parallelism { 0 = all or specify value }

Note:The underlined value is the default

X
Y

g
3

ALTER INDEX ... REBUILD

e FILLFACTOR — how full to make the leaf level pages of the index. This is a percentage from
I-100, the default is 0 which is the same as 100.

» PAD_INDEX — specifies whether you want to leave free space in the intermediate pages.
The fillfactor value is used for this, either the saved value or the value you specify in the
command.

» SORT_IN_TEMPDB - this specifies whether to use the TempDB database to do a sort or
to use the user database. If there is enough memory to sort the index this will all be done
in memory instead.

* IGNORE_DUP_KEY - this tells SQL whether to continue or fail the index build if there is
a duplicate key.

o STATISTICS_NORECOMPUTE — this tells SQL whether to re-compute the statistics for
the index

* ONLINE — this allows the index to be built online, so the there is no locking of the table
or index. This is only available for the Enterprise Edition.

* ALLOW_ROW_LOCKS — tells SQL whether to use row locking when building the index

 ALLOW_PAGE_LOCKS - tells SQL whether to use page level locking when building the
index

» MAXDOP — specifies how many processors to use for the index build. Only available in
the Enterprise Edition.

N
A

S
&

Source: http://msdn.microsoft.com/en-us/library/ms 1302 14.aspx

ALTER INDEX ... REBUILD

ALTER INDEX PK_Employee EmployeelD
ON HumanResources.Employee
REBUILD;

N

ALTER INDEX ... REBUILD

ALTER INDEX ALL
ON Production.Product
REBUILD

WITH
(FILLFACTOR = 80,
SORT IN_TEMPDB = ON,
STATISTICS. NORECOMPUTE = ON);

N

ALTER INDEX ... REORGANIZE

ALTER INDEX { index_name | ALL }
ON <object>
REORGANIZE
WITH
LOB COMPACTION ={ON | OFF }

Note: The underlined value is the default

X
-y

FA

ALTER INDEX ... REORGANIZE

» LOB COMPACTION - Specifies that all
pages that contain large object (LOB)
data are compacted. LOB data types are
image, text, ntext, varchar(max),
nvarchar(max), varbinary(max), and xml.

N

ALTER INDEX ... REORGANIZE

ALTER INDEX PK_ProductPhoto ProductPhotolD
ON Production.ProductPhoto
REORGANIZE ;

X
-y

FA

Partitioned Indexes - Rebuild

ALTER INDEX { index_name | ALL }
ON <object>
REBUILD
PARTITION = partition_number

WITH
SORT_IN_TEMPDB = { ON | OFF }
MAXDOP = max_degree_of _parallelism

N

Partitioned Indexes - Reorganize

ALTER INDEX { index_name | ALL }
ON <object>
REORGANIZE
PARTITION = partition_number

WITH
LOB_COMPACTION ={ON | OFF}

N

Partitioned Indexes

ALTER INDEX IX_TransactionHistory
ON Production.TransactionHistory

REBUILD
Partition = 5;

ALTER INDEX IX_TransactionHistory
ON Production.TransactionHistory

REORGANIZE
Partition = 5;

X
-y

FA

DROP EXISTING

* You can use the DROP_EXISTING clause to rebuild the
index, add or drop columns, modify options, modify column
sort order, or change the partition scheme or filegroup.

e |f the index enforces a PRIMARY KEY or UNIQUE
constraint and the index definition is not altered in any way,
the index is dropped and re-created preserving the existing
constraint.

« DROP_EXISTING enhances performance when you re-
create a clustered index, with either the same or different
set of keys, on a table that also has nonclustered indexes.

* The nonclustered indexes are rebuilt once, and then only if
the index definition has changed.

e The DROP_EXISTING clause does not rebuild the
nonclustered indexes when the index definition has the same
index name, key and partition columns, uniqueness attribute,
and sort order as the original index.

A

%L Ti,

FA

DROP EXISTING

CREATE CLUSTERED INDEX
IX_ WorkOrder ProductlD
ON Production.WorkOrder(ProductlID)

WITH
(DROP_EXISTING = ON);

N

HEAP

CREATE CLUSTERED INDEX IX_WorkOrder
ON Production.WorkOrder(ProductID)

DROP Production.WorkOrder. IX_ WorkOrder

X
-y

FA

Managing

e Collecting data
 Selective rebuilds / reorgs
* Removing unused indexes
* Recovery Models and impact
e Transaction Log Usage

- DBCC SQLPERF(logspace)
e Online rebuilds
« MAXDOP
* Changing index settings

> PAD INDEX

> FILLFACTOR
e Maintenance Plans

X
-y

FA

Impact by Recovery Model

Database Recovery Model

Index operation Full Bulk-logged Simple
ALTER INDEX

REORGANIZE Fully logged Fully logged Fully logged
ALTER INDEX REBUILD [Fully logged Minimally logged Minimally logged
CREATE INDEX Fully logged Minimally logged Minimally logged

DROP INDEX

Index page deallocation is
fully logged;

new heap rebuild, if
applicable, is fully logged.

Index page deallocation is
fully logged;

new heap rebuild, if
applicable, is minimally
logged.

Index page deallocation is
fully logged;

new heap rebuild, if
applicable, is minimally
logged.

Source: http://msdn.microsoft.com/en-us/library/ms 1302 14.aspx

N
A

S
&

Monitoring Using Other Tools

Questions and Wrap-up

* Thanks to our sponsor: ldera

 Next webcast In the series:

— Database Mirroring Concepts
— May 13, 2009, 4pm EDT

OOOOOOOOOOOOOOOOOOOOOOOOOOO

